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Abstract

Trauma, malposition and age-related degeneration of articular cartilage often result in severe
lesions that do not heal spontaneously. Many efforts over the last centuries have been undertaken
to support cartilage healing, with approaches ranging from symptomatic treatment to structural
cartilage regeneration. Microfracture and matrix-associated autologous chondrocyte transplantation
(MACT) can be regarded as one of the most effective techniques available today to treat traumatic
cartilage defects. Research is focused on the development of new biomaterials, which are intended to
provide optimized physical and biochemical conditions for cell proliferation and cartilage synthesis.
New attempts have also been undertaken to replace chondrocytes with cells that are more easily
available and cause less donor site morbidity, e.g. adipose derived stem cells (ASC). The number
of in vitro studies on adult stem cells has rapidly increased during the last decade, indicating that
many variables have yet to be optimized to direct stem cells towards the desired lineage. The
present review gives an overview of the difficulties of cartilage repair and current cartilage repair
techniques. Moreover, it reviews new fields of cartilage tissue engineering, including stem cells,
co-cultures and platelet-rich plasma (PRP). Copyright  2011 John Wiley & Sons, Ltd.
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1. The difficulty of treating articular
cartilage lesions

Trauma, erroneous biomechanically defective positioning
and age-related degeneration often result in chondral
lesions. Clinically, cartilage defects are accompanied by
persistent pain and functional limitations of the joint
and are therefore considered a severe medical and
therapeutic problem. In many cases minor lesions can
dramatically influence structure and function of articu-
lar cartilage (Alford and Cole, 2005). In addition, the
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potential of cartilage for self-regeneration is very limited.
Since vascularization is absent in articular cartilage, nei-
ther inflammation nor the formation of a fibrin clot can
contribute to the healing of defects. Only cells present
in the surrounding tissue, including chondrocytes or syn-
oviocytes, may contribute to the filling of defects by
increasing proliferation and matrix synthesis. However,
even in very small defects this is not sufficient to regen-
erate the surface of the injured cartilage (Mankin, 1982).
In the case of deep cartilage defects down to the subchon-
dral bone, mesenchymal stem cells (MSC) can contribute
to filling by migration, proliferation, differentiation and
matrix synthesis (Furukawa et al., 1980). The synthesized
matrix, however, usually resembles fibrous cartilage and
has poor stiffness and resistance capabilities (Nehrer et al.,
1999). Due to the poor self-repair potential of articular
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Figure 1. Treatment strategies for articular cartilage defects:
state of the art and possible future applications

cartilage, there is a need for techniques to achieve regen-
eration of cartilage defects. The present review gives a
short overview on the state of the art in the clinics (for
further reading, see Bedi et al., 2010) and focuses on pos-
sible future perspectives, including the use of MSC and
platelet-derived products (Figure 1).

2. State-of-the-art procedures
in cartilage repair and regeneration

2.1. Techniques developed prior to autologous
chondrocyte transplantation

Treatment of cartilage defects ranges from simple pain-
relieving techniques to sophisticated tissue-engineering
approaches. A gold standard of cartilage regeneration,
however, has not yet been found.

Allogenic material derived from cadaveric donors has
been widely used, particularly for the treatment of large
osteochondral defects, with varying degrees of success.
Best clinical results were achieved using small-fragmented
osteochondral allografts when transplanted into traumatic
knee joints (Czitrom et al., 1986). Although articular
cartilage as a non-vascularized tissue is immunologi-
cally privileged, immune responses originating from the
transplanted subchondral bone still constitute a potential
problem (Stevenson, 1987). Therefore, studies performed
during the last 20 years have mainly focused on the use of
autologous material and marrow stimulation techniques.
Transplantation of autologous cylindrical osteochondral
grafts is most commonly referred to as mosaicplasty
and can be carried out by an arthroscopic procedure
or as an open joint approach (Hangody et al., 1997;
Szerb et al., 2005). Grafts of variable diameters in the
range 2.7–8.5 mm are harvested, allowing filling rates

of more than 90% (Szerb et al., 2005). Depending on
the defect location, good to excellent clinical results were
demonstrated in 79–94% of 831 treated patients, based
on clinical scores, imaging techniques, arthroscopy, his-
tological examination of biopsy samples and cartilage
stiffness measurements (Szerb et al., 2005). Nevertheless,
the mosaicplasty only constitutes a symptomatic treat-
ment method, does not fill the defect homogeneously and
is associated with donor site morbidity.

Superficial cartilage defects and osteoarthritic joints
can be treated with lavage and shaving procedures, aim-
ing to relieve joint pain by removing intra-articular debris
and smoothing the cartilage surface. Debridement is a
more drastic version of shaving, which may also include
meniscectomy, chondrectomy and removal of osteophytes
(McLaren et al., 1991). Besides the effect of lavage to
remove pain-signalling or pain-mediating molecules, it is
assumed that proteoglycans are extracted from the super-
ficial cartilage zone, which might promote adhesion of
synovium-derived repair cells (Hunziker and Kapfinger,
1998). The success rates of the described treatments are
highly variable and a lack of prospective randomized clin-
ical trials makes it impossible to measure their usefulness
(Hunziker, 2002).

Abrasion chondroplasty and the microfracture tech-
nique induce spontaneous repair/regeneration by provid-
ing access to the bone or bone marrow space. Success
rates for abrasion chondroplasty are controversial and
depend on multiple factors, including age of the patient,
degree of arthritis, activity level and length of follow-up
(Bert, 1993). In the microfracture technique, improved
joint functionality and relief from pain in 75% of cases
is reported when applied in young patients, especially
in young athletes (Sledge, 2001). Today athletes often
still prefer microfracture to more recent techniques, such
as matrix-associated autologous chondrocyte transplanta-
tion (MACT), aiming to be back in competition after a
shorter period of rehabilitation.

2.2. Autologous chondrocyte transplantation
and matrix-associated autologous chondrocyte
transplantation

The autologous chondrocyte transplantation (ACT) was
primarily described by Brittberg et al. (1994). The prin-
ciple of ACT is to implant autologous chondrocytes
into the cartilage defect in order to fill it with newly
synthesized cartilage matrix. The procedure involves
arthroscopic excision of a biopsy (about 200 mg) from a
non-loadbearing area of healthy articular cartilage. Chon-
drocytes are then isolated by collagenase treatment and
expanded in vitro. During a second procedure, injured
cartilage is debrided up to the healthy borders and the
defect is covered with a periosteal flap, which is taken
from the medial tibia. Finally, 50–100 µl chondrocyte
cell suspension containing 2.6–5 million cells is injected
under the periosteal graft (Brittberg et al., 1994), which
has been sutured in the beginning but has later also
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been sealed with fibrin sealant. With a follow-up period
of 2–10 years, results of clinical studies revealed well-
integrated repair tissue in 90% of treated patients (Peter-
son et al., 2003). One of the drawbacks of this method
is the symptomatic hypertrophy of the periosteal flap in
5–25% of cases (Horas et al., 2000). As an alternative
to periosteal flaps, collagen membranes, e.g. Chondro-
Gide (Geistlich Biomaterials, Wolhusen, Switzerland),
are used during the second generation of ACT, resulting
in satisfactory repair without hypertrophic development
at a 1 year post-surgery arthroscopy (Haddo et al., 2004).

MACT represents the latest in the regeneration
of articular cartilage (Marlovits and Trattnig, 2006;
Resinger et al., 2004). Today it is widely considered
to be one of the best techniques to repair traumatic
cartilage defects. In contrast to ACT, cells are seeded
to a scaffold prior to intra-articular implantation.
The following biomaterials represent the state of
the art of currently applied scaffolds in the clinics:
collagen type I/III fleece (Chondro-Gide), hyaluronan
fleece (Hyalograft C, Fidia Advanced Biopolymers,
Abano Terme, Italy), collagen I gel (CaReS, Ars
Arthro, Krems, Austria), collagen matrix (Novocart

3D, TeTeC, Reutlingen, Germany). These have recently
been compared regarding morphological and seeding
differences (Nuernberger et al., 2010). As limitations of
both ACT and MACT, it should be mentioned that only
traumatic cartilage lesions of patients up to the age
of 50 years can be treated. Moreover, ACT and MACT
represent a highly cost-intensive two-step procedure
including the drawback of chondrocyte dedifferentiation
during cell expansion. This is typically accompanied by
decreased collagen type II and increased collagen type I
expression (Diaz-Romero et al., 2005). Finally, biopsies
must be taken from healthy cartilage for cell isolation,
which implies additional donor site morbidity for the
patient.

Although it is more than 20 years ago that the ACT was
primarily applied, previously established techniques are
still of importance. A randomized clinical trial demon-
strated that there is no difference in the clinical and
radiographic results between MACT and microfracture at
5 years post-surgery (Knutsen et al., 2007). As concluded
by the authors, further long-term follow-up is needed to
find out which method is the best for the patient. Addi-
tionally it is important for future evaluations to take into
account factors such as cost and time for cell isolation and
expansion.

3. The potential of MSC to improve the
state of the art

Based on the limitations of MACT as described in the
previous section, cell types of higher availability, such as
MSC, have also been investigated to treat cartilage defects.

Stem cells are defined as undifferentiated cells pos-
sessing the ability to self-renew as well as to convert to

specialized cells (Smith, 2001; Weissman et al., 2001).
They can be classified by their potency, which gives infor-
mation about the ability to differentiate towards one or
multiple lineages.

Adult tissues such as bone marrow or adipose tissue con-
tain multipotent cells which are able to turn into cell types
of the mesenchymal lineage. Under appropriate culture
conditions, MSC are capable of differentiating towards
the osteogenic, chondrogenic, myogenic and adipogenic
lineages (Barry et al., 2001; Franchini, 2003; Krampera
et al., 2006; Pittenger et al., 1999). Bone marrow-derived
MSC (BMSC) represent the most intensively investigated
MSC type in cartilage tissue engineering. They can be
isolated from bone marrow aspirates, expanded in mono-
layer and induced for chondrogenic differentiation (John-
stone et al., 1998; Mackay et al., 1998). Zuk et al. (2001)
found that adipose-derived stem cells (ASC) also show
an ability to form a cartilage-like matrix, as indicated by
alcian blue and collagen type II staining. Major advantages
for this cell source are abundant availability accompanied
by minimal donor site morbidity. The simple surgical
procedure and the uncomplicated enzyme-based isolation
procedure make adipose tissue an attractive source for
MSC. In contrast to bone marrow, adipose tissue can be
harvested in large amounts with low donor site morbidity.
Therefore it would be advantageous if the same or higher
cartilage quality could be attained with ASC. A consider-
able number of papers have been published since 2003,
addressing the question of which cell type, ASC or BMSC,
possesses a higher chondrogenic potential (Table 1). A
variety of authors concluded that BMSC can be more eas-
ily differentiated towards the chondrogenic lineage than
ASC (Afizah et al., 2007; Danisovic et al., 2009; Huang
et al., 2005; Im et al., 2005; Jakobsen et al., 2009; Kisiday
et al., 2008; Koga et al., 2008; Liu et al., 2007; Vidal et al.,
2008). However, Diekman et al. (2010) pointed out that
ASC and BMSC require unequal growth factor treatment
for chondrogenic induction. While aggrecan was upreg-
ulated in ASC when treated with bone morphogenetic
protein 6 (BMP-6) during differentiation, transforming
growth factor-β3 (TGFβ3) led to aggrecan upregulation in
BMSC. An explanation for this has been given by Hennig
et al. (2007), who reported that ASC possess a distinct
TGFβ receptor repertoire. Apart from that, the cell surface
phenotype of ASC is quite similar to BMSC. Both cell types
express CD105, CD73, CD90 and lack the haematopoietic
lineage markers c-kit, CD14, CD11b, CD34, CD45, CD79,
CD19 and HLA-DR. These markers are considered the
minimal prerequisite to describe MSC (Katz et al., 2005;
Schaffler and Buchler, 2007). In 2006, MSC were defined
by the International Society for Cellular Therapy as a
plastic-adherent cell population with the following sur-
face marker profile: CD13+, CD44+, CD90+, CD73+ and
CD105+, CD14−, CD11b−, CD79−, CD34−, CD45− and
HLA-DR− (Dominici et al., 2006). Analysis of ASC and
BMSC revealed differences in only four (CD49d, CD105,
CD106, NGFR) of 50 markers (Table 2) (De la Fuente
et al., 2004). Rider et al. (2008) found higher expression
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Table 1. The chondrogenic potential of ASC and BMSC

Reference Cell source Outcome

(Lee et al., 2004) Human No difference between ASC and BMSC found by toluidine blue staining
(Danisovic et al., 2009) Human ASC possess slightly decreased chondrogenic potential
(Diekman et al., 2010) Human Collagen type II is higher expressed by BMSC. Regarding aggrecan expression, BMSC

respond better to TGFβ, while ASC require BMP-6
(Jakobsen et al., 2009) Human In hyaluronic acid scaffolds chondrogenesis of BMSC was higher compared to ASC
(Liu et al., 2007) Human BMSC differentiate better into osteoblasts and chondrocytes, while ASC have higher

adipogenic differentiation potential
(Afizah et al., 2007) Human BMSC and ASC from the same donor: BMSC are more suitable for cartilage tissue

engineering than ASC
(Huang et al., 2005) Human A patient-matched study: under the described conditions, BMSC demonstrated a higher

chondrogenic potential
(Im et al., 2005) Human Results of this study suggest that ASC have inferior capacity for chondrogenic

differentiation
(Winter et al., 2003) Human There are no differences in the expression of chondrogenic marker genes in 2D cultures

between ASC and BMSC. In 3D cultures BMSC expressed a gene profile similar to that of
osteoarthritic cartilage

(Koga et al., 2008) Rabbit BMSC have higher chondrogenic potential compared to ASC in vitro and in vivo
(Peng et al., 2008) Rat There are no major differences between ASC and BMSC regarding the chondrogenic

differentiation potential
(Kisiday et al., 2008) Equine Superior chondrogenesis of BMSC was demonstrated in comparison to ASC
(Vidal et al., 2008) Equine Superior chondrogenesis of BMSC was demonstrated in comparison to ASC

Table 2. Differences in surface marker expression

BMSC ASC

CD49d − ±
CD105 ++ +++
CD106 ++ −
NGFR ± −

+++, Markers staining positive in more than 85% of cells;
++, markers positive in 41–85% of cells; +, markers positive
in 11–40% of cells; ±, markers positive in 2–10% of cells;
−, markers expressed in <2% of cells (De la Fuente et al.,
2004).

of HLA-ABC in BMSC, making ASC more suitable for
allogenic transplantations.

MSC can also be easily extracted from the umbili-
cal cord matrix, the so-called ‘Wharton’s jelly’ (Lund
et al., 2007; Wang et al., 2004; Weiss et al., 2006). The
main role of Wharton’s jelly is to prevent overly intense
mechanical forces on the vessels of the umbilical cord.
The Wharton’s jelly matrix consists of glycosaminogly-
cans (GAGs) and collagen fibrils (Meyer et al., 1983).
Hyaluronic acid represents the most abundant GAG
(Sobolewski et al., 1997), which provides a gel-like envi-
ronment for embedded immature progenitor cells and
differentiated myofibroblast-like cells (McElreavey et al.,
1991; Nanaev et al., 1997). Termed ‘human umbilical
cord matrix cells’ (HUCM), the immature progenitor cells
have been found to possess multipotent differentiation
capacity, as indicated by successful transformation into
adipocytes, chondrocytes, osteoblasts and myoblasts (Can
and Karahuseyinoglu, 2007). A few studies focused on
chondrogenic differentiation of HUCM in 3D culture, dur-
ing which GAGs as well as collagen I and II were detected
histologically (Bailey et al., 2007; Karahuseyinoglu et al.,

2007; Wang et al., 2004, 2008). In contrast to BMSC
and ASC, which have been demonstrated to possess the
ability to synthesize hyaline-like cartilage, the expres-
sion of collagen type II and aggrecan is decreased in
HUCM, indicating the synthesis of fibrous tissue (Hildner
et al., 2010b; Wang et al., 2009). Although it appears that
HUCM possess inferior chondrogenic potential compared
to ASC and BMSC, it is important to note that the differ-
ence could also be due to the supplementation of specific
growth factors, which might be more beneficial for one
cell type than for the other. This could be the case for the
addition of BMP-6, which has been shown to induce chon-
drogenesis in ASC, while its effect on HUCM is unknown
(Hennig et al., 2007). A screening for a large panel of
growth factors would be advantageous to elucidate the
optimal growth factor combination for directing HUCM
towards the chondrogenic lineage.

Regarding the clinical application of MSC in cartilage
regeneration, the question arises whether the cells can be
applied in a simple and cost-effective one-stage procedure,
or have to be expanded prior to implantation. To answer
this question, it is important to address not only the cell
quantity but also the differentiation potential of primary
versus expanded cells. For porcine BMSC it is reported that
the chondrogenic potential of expanded cells is strongly
attenuated (Vacanti et al., 2005). In contrast, expanded
human ASC possess an increased chondrogenic poten-
tial compared to unpassaged ASC (Estes et al., 2006b).
ASC from the infrapatellar fat pad it is reported that
unpassaged cells differentiate towards the chondrogenic
lineage as well as expanded cells (Jurgens et al., 2009),
which opens both ways, one- and two-stage procedures.
A prerequisite for performing one-stage procedures is the
availability of rapid cell isolation techniques that can be
applied in the operating theatre. Lysis of red blood cells
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can be performed to enhance the concentration of MSC in
porcine bone marrow, which yields a cell population capa-
ble of chondrogenic differentiation (Peterbauer-Scherb
et al., 2010). In an equine model, application of con-
centrated bone marrow aspirates in combination with
microfracture clearly improved cartilage repair in a one-
step procedure (Fortier et al., 2010).

In conclusion, different types of adult stem cells should
be considered for cartilage tissue engineering, also tak-
ing into account factors such as autologous/allogenic use,
donor site morbidity and availability. By comparing dif-
ferent cell types for their chondrogenic potential, it is
important to note that monolayer expansion conditions,
three-dimensional (3D) culture conditions and the time
point of analysis also influence the outcome (Diekman
et al., 2010).

3.1. The ability of biomaterials to improve
chondrogenic differentiation of MSC

3.1.1. 3D cultivation of cells

During chondrogenic differentiation, cells prefer a 3D
environment, provided in the simplest strategy by the cells
themselves. This system is referred to as ‘micromass pellet
culture’ or ‘aggregate culture’. Constructs are generated by
centrifugation of cell suspensions (Johnstone et al., 1998)
or by culturing high-density cell droplets (Dragoo et al.,
2003). The formation of micromass pellets is based on
cell condensation (mediated by N-cadherin) (Hellingman
et al., 2010), which represents the onset of chondrogenic
differentiation (DeLise and Tuan, 2002a, 2002b; Denker
et al., 1999). Because it is an easy and effective way to
study chondrogenesis, this system is frequently used for
in vitro cartilage tissue-engineering approaches (Chiou
et al., 2006; De Ugarte et al., 2003; Dragoo et al., 2003;
Hildner et al., 2010a; Malladi et al., 2006; Mochizuki
et al., 2006; Zheng et al., 2006; Zuk et al., 2002).

In vivo implantation of cells requires suitable bioma-
terials that support cell attachment, proliferation and
differentiation. Considerations for scaffolds include poros-
ity, bioactivity, mechanical integrity and integration as
well as easy handling. Moreover, biodegradability is
an important factor in facilitating replacement of the
material by newly synthesized cartilage matrix. Products
manufactured from collagen and hyaluronan fulfil these
requirements to a certain degree and are therefore used
in clinical MACT (see sections on ACT and MACT, above).

3.1.2. State of the art in the laboratory

Alginate, agarose, fibrin and gelatin have been extensively
investigated in order to evaluate their ability to support
chondrogenic differentiation of MSC in vitro and in vivo
(Awad et al., 2003, 2004; Dragoo et al., 2003, 2007;
Erickson et al., 2002; Estes et al., 2006a). Alginate is
a material which is produced from brown algae and
consists of α-L-guluronic acid and β-D-mannuronic acid.

Cells can be entrapped by inducing gelation with calcium.
Cartilage-like matrix production of ASC entrapped in
alginate was demonstrated after induction with TGFβ1

(Awad et al., 2003; Erickson et al., 2002) or BMP-6
(Estes et al., 2006a). A comparative study revealed that
cells in gelatin, which is collagen-based, produce higher
amounts of sulphated GAGs (sGAG) and hydroxyproline
than cells in agarose and alginate (Awad et al., 2004).
As one of the most abundant molecules in cartilage,
collagen is of special interest for use as a biomaterial.
Nevertheless, Awad et al. (2004) also reported that the
cell morphology was more spherical and similar to
chondrocytes when ASC were cultured in alginate and
agarose compared to gelatin, in which the cells appeared
fibroblastic. Poor biodegradability of agarose (Rahfoth
et al., 1998) and extensive immune reactions after
implantation of alginate have been reported (Hunziker,
2002), limiting the applicability of these materials for
cartilage regeneration in vivo. Fibrin, a blood-derived
biomaterial, is the polymerized form of fibrinogen. Cells
can be enclosed by suspending them in fibrinogen,
followed by mixing the suspension with thrombin, which
induces polymerization (Hildner et al., 2009; Ho et al.,
2010). Encapsulated in fibrin, ASC from the infrapatellar
fat pad demonstrated collagen type II and aggrecan
expression and the sGAG content reached 50% of
native cartilage (Dragoo et al., 2003). In vivo, fibrin was
demonstrated to be a suitable material for healing full-
thickness cartilage defects in rabbits (Dragoo et al., 2007).
By mixing chondroitin sulphate with fibrin sealant, cell
proliferation, sGAG content and type II collagen expression
could be significantly enhanced compared to fibrin
matrices without chondroitin sulphate (Wei et al., 2007).

3.1.3. Future perspectives

There is a remarkable emerging field of functional/
instructive scaffolds, including natural and synthetic
biomaterials. They include peptide gels, combinations
of different biomaterials as well as the combination
of scaffolds, nanoparticles and growth factors. Betre
et al. (2006) synthesized a polypeptide gel consisting
of Val–Pro–Gly–Xaa–Gly with incorporation of Val, Gly
or Ala at the Xaa residue. Surprisingly, this elastin-like
polypeptide demonstrated chondrogenic induction poten-
tial for ASC without the addition of exogenous factors
such as TGFβ. A dual growth factor-releasing scaffold is
described by Im and Lee (2010), who incorporated TGFβ2

and BMP-7 into a porous polycaprolactone (PCL)/F127
scaffold. In contrast to the latter, chondrogenic differ-
entiation of ASC could also be achieved when seeded
on nanoparticles composed of poly(lactide-co-glycolide)
(PLGA), Pluronic F127 and heparin loaded with TGFβ1

(Jung et al., 2009).
While one part of the scientific community relies more

and more on the use of synthetic and functional bio-
materials to improve chondrogenic differentiation, some
researchers hypothesize that the natural environment of
chondrocytes – cartilage matrix itself – has the potential
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to induce chondrogenic differentiation of MSC or rediffer-
entiation of chondrocytes (Cheng et al., 2009; Diekman
et al., 2010; Peretti et al., 2000; Yang et al., 2008). The
underlying mechanism is potentially based on the estab-
lishment of interactions between cell surface receptors
and extracellular matrix ligands. ASC and BMSC cul-
tivated on scaffolds derived from lyophilized articular
cartilage demonstrated chondrogenic differentiation by
cartilage-specific gene and protein expression (Diekman
et al., 2010). However, these researchers reported that
the scaffolds alone are not responsible for initiating the
differentiation. In fact, addition of growth factors such as
BMP-6 and TGFβ is necessary to achieve chondrogenic
induction of ASC and BMSC. In contrast to these findings,
Cheng et al. (2009) reported that the cartilage scaffold
by itself has inductive capacity, most likely through direct
cell–matrix interactions. Moreover, the release of sig-
nalling factors from the cartilage matrix, as well as
‘matrikines’ (partially broken-down matrix molecules),
may play a role (Cheng et al., 2009). However, it is
also important to note that, differently to Diekman et al.
(2010), the culture conditions included the use of fetal calf
serum (FCS) during differentiation, which is also a source
of growth factors such as TGFβ (Cheng et al., 2009).

Obviously, many studies have demonstrated that the
3D environment has a profound effect on chondrogenic
differentiation of MSC. However, in order to elucidate
the best culture conditions, further investigations require
defined standards to be able to compare the properties of
different biomaterials.

3.2. The impact of growth factors

As already indicated in the previous section, not only the
physical environment but also the action of either endoge-
nous or supplemented growth factors is important for the
differentiation of MSC. Studies performed with BMSC and
chondrocytes demonstrated that TGFβ is one of the most
important growth factors for the induction of cartilage
formation (Johnstone et al., 1998; Mackay et al., 1998;
Yaeger et al., 1997). Three TGFβ isoforms are known. It
is reported that TGFβ3 and TGFβ2 lead to significantly
higher collagen type II and proteoglycan expression of
BMSC than TGFβ1 (Barry et al., 2001). TGFβ can act via
three different TGFβ receptors (Dore et al., 1998; John-
son et al., 1995). However, TGFβ receptor I is weakly
expressed by ASC and BMPs are necessary to enhance its
expression, which results in better chondrogenic differen-
tiation (Hennig et al., 2007).

To date, approximately 20 BMPs have been identified.
BMPs play an important role in a wide range of bio-
logical processes, from tissue differentiation during early
embryogenesis to maintenance of the postnatal tissue
homeostasis (Xiao et al., 2007). In 1965 Urist found that
ectopic bone formation could be induced by implanta-
tion of demineralized bone (Urist, 1965). However, the
proteins responsible for the induction remained unknown
until the late 1980s, when BMP-2, BMP-3 (osteogenin)

and BMP-4 were isolated and cloned (Luyten et al., 1989;
Wozney et al., 1988; Wozney, 1992).

Knippenberg et al. (2006) investigated the ability of
BMP-2 and BMP-7 to induce differentiation and found that
a short treatment for only 15 min with BMP-2 is capable of
directing ASC towards the osteogenic lineage, while BMP-
7 stimulates ASC to differentiate towards a chondrogenic
phenotype. The addition of 500 ng/ml BMP-6 to the dif-
ferentiation medium increased aggrecan gene expression
by 200-fold and collagen II gene expression by 38-fold
compared to the untreated control (Estes et al., 2006a).
Hennig et al. (2007) found that, in combination with
TGFβ3 10 ng/ml BMP-6 was sufficient for chondrogenic
induction, while the effects of BMP-2, BMP-4 and BMP-7
were less pronounced. In contrast, Kim and Im (2009)
reported that BMP-7 is the most promising candidate
for chondrogenic induction of human ASC in combina-
tion with 5 ng/ml TGFβ2. The discrepancy between these
results and those of Hennig et al. (2007) might be due
to higher concentration of BMP-2, BMP-6 and BMP-7
(100 ng/ml) and the use of TGFβ2 in contrast to TGFβ3

(Kim and Im, 2009). Although both studies conclude that
the combination of TGFβ and BMPs enhances the chon-
drogenesis of ASC, they also admit that this results in
hypertrophic development, as indicated by enhanced col-
lagen type X expression (Hennig et al., 2007; Kim and
Im, 2009) (Figure 2). This problem can possibly be over-
come with parathyroid hormone-related protein (PTHrP),
which is reported to downregulate collagen type I and
collagen type X protein but upregulates a wide range of
chondrogenic markers (Kim et al., 2008).

Growth and differentiation factor 5 (GDF-5) is a syn-
onym for BMP-14, which also belongs to the BMP family.
It was first cloned in 1994 and plays an important role
in skeletal development (Buxton et al., 2001; Hotten
et al., 1994). It is mainly expressed during early carti-
lage condensation and in the interzone as well as the
perichondrium at later stages (Buxton et al., 2001). Feng
et al. (2008) investigated the chondrogenic potential of
rat ASC transfected with Ad-GDF-5, which was compara-
ble to induction using exogenous GDF-5 (100 ng/ml) and
TGFβ (10 ng/ml).

Basic fibroblast growth factor (FGF-2) represents
another widely used growth factor in cartilage tissue engi-
neering, demonstrating enhanced chondrogenesis when
applied to equine cartilage explant cultures (Henson
et al., 2005), rabbit cartilage defects (Ishii et al., 2007),
periosteal explant cultures (Stevens et al., 2004) or canine
chondrocytes (Veilleux and Spector, 2005). It is reported
that ligand binding to FGF receptors 1–4 leads to acti-
vation of mitogen-activated protein kinase/ERK kinase
(MEK), which then phosphorylates mitogen-activated pro-
tein kinase (MAPK) (Murakami et al., 2000). In turn,
activation of MAPK modulates a cascade of kinases and
transcription factors, which finally upregulates SOX9 [SRY
(sex-determining region Y)-box 9], a key regulator in
chondrogenesis (Murakami et al., 2000).

Interestingly, information about the chondrogenic
induction potential of FGF-2 is controversial when applied
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Figure 2. Important factors for expansion and chondrogenic
differentiation of ASC. FGF-2 promotes proliferation of ASC
and retains their chondrogenic differentiation potential. BMP-6
and TGFβ induce the chondrogenic differentiation but lose their
potential in the presence of FGF-2. Final differentiation towards
hypertrophic chondrocytes is attenuated by PTHrP

to ASC. Chiou et al. (2006) reported that FGF-2 supple-
mented to the differentiation medium promotes sGAG
synthesis and collagen type II expression. In contrast,
Hennig et al. (2007) could not confirm these findings
and our own results demonstrate that FGF-2 even coun-
teracts BMP-6/TGFβ3-induced chondrogenesis (Figure 3)
(Hildner et al., 2010a). The controversial effects of FGF-
2 on chondrogenesis have also been addressed by Khan
et al. (2008), who found that FGF-2 downregulates chon-
drogenic markers during cell expansion. Nevertheless,
ASC expanded in the presence of FGF-2, demonstrat-
ing stronger upregulation of chondrogenic genes and
greater cartilage matrix production during differentiation
in 3D micromass pellets compared to cells expanded with-
out FGF-2 (Khan et al., 2008). Therefore, it is important
to note that FGF-2 is essential for cell propagation but
negatively influences cartilage formation at the differ-
entiation stage. This is also consistent with Hellingman
et al. (2010), who report that FGF-2 has a strong binding
affinity to FGF receptor 1, which is strongly expressed

in expanding MSC but is downregulated during conden-
sation; when FGF-2 was added afterwards (days 3–14),
chondrogenic differentiation was inhibited.

Many studies published within recent years have inves-
tigated the function of growth factors and provide broad
knowledge on the induction and inhibition of stem cell
chondrogenic differentiation. Now it is important to utilize
this knowledge to further optimize the quality of tissue-
engineered cartilage towards hyaline cartilage. However,
to get the approval for clinical use of a growth factor may
take decades. As described in the next section, another
way that stem cells can be induced for chondrogenic dif-
ferentiation is by the presence of mature cells, directing
them towards the desired lineage.

3.3. Co-culture in cartilage tissue engineering:
being supported by teachers

It is well accepted that different cell types communicate
via soluble factors (paracrine signalling) or direct cell–cell
contact (reviewed in Hendriks et al., 2007). In the latter,
two possible signalling mechanisms are known: (a) gap
junctions, which are able to build a direct connection
between the cytoplasm of interacting cells; and (b) what
is referred to as juxtacrine communication, when exposed
signals of one cell are bound by the membrane receptors of
another cell. Most co-culture studies performed in the field
of osteochondral tissue engineering focused on the regen-
eration of nucleus pulposis tissue (Li et al., 2005; Lu et al.,
2007, 2008; Richardson et al., 2006; Yamamoto et al.,
2004; Zhang et al., 2005). ASC are accessible to paracrine
factors released by disc cells, as demonstrated by upreg-
ulated cartilage-specific gene expression collagen type II
and aggrecan (Li et al., 2005; Lu et al., 2007, 2008). The
release of soluble factors has also been shown to support
chondrogenesis in an indirect co-culture model of human
embryonic stem cells (hESCs) and primary chondrocytes
by significantly elevated expression of GAGs, type II but
also type I collagen (Vats et al., 2006). In contrast, in
co-cultured BMSC and nucleus pulposis cells, a direct
cell–cell contact is required to achieve differentiation
(Richardson et al., 2006; Yamamoto et al., 2004). One of
our recent studies shows that ASC contribute to fibrocar-
tilage formation when co-cultured with human expanded
chondrocytes (Hildner et al., 2009). Fibrocartilage is
required for the regeneration of meniscal tissue and con-
tains a mixture of type II and type I collagen. Co-culture
of fibrochondrocytes and articular chondrocytes also
resulted in the formation of a matrix very similar to native
knee meniscus (Aufderheide and Athanasiou, 2007;
Hoben et al., 2007; Hoben and Athanasiou, 2008). Gan
and Kandel (2007) investigated the influence of unpas-
saged chondrocytes on passaged, dedifferentiated chon-
drocytes, aiming to induce redifferentiation. Passaged,
dedifferentiated chondrocytes were directly co-cultured
with 5–40% primary chondrocytes. Indeed, induction of
redifferentiation, as indicated by upregulated collagen II
and downregulated collagen I expression, could be shown.
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Figure 3. Micromass pellet of ASC treated with TGFβ3 and BMP-6 (a, c); transmission electron microscopy demonstrates a spherical
morphology of the cells which include dense glycogen inclusions in the cytoplasm, which is typical for chondrocytes (a). In the
presence of TGFβ3, BMP-6 and FGF-2, the synthesized tissue appears heterogeneous and includes undifferentiated cells (b). Collagen
type II staining was only positive in the presence of TGFβ and BMP-6 in the differentiation medium (c). Additionally supplemented
FGF-2 inhibited collagen II expression (Hildner et al., 2010a)

The difficulty in direct co-culture is to prove which
cell type is responsible for the chondro-inducing effect.
Recently, Bigdeli et al. (2009) presented a technique that
addresses this question (Figure 4). In order to distinguish
between hESCs and human chondrocytes, donors of dif-
ferent gender were used for direct co-culture. Prior to
the formation of micromass pellets, human chondrocytes
were irradiated to prevent proliferation of this cell type.
On day 14 micromass pellets were treated with colla-
genase to remove synthesized matrix and the released
cells were further subcultured in 2D, whereby only hESCs
were able to proliferate. After monolayer expansion, the
absence of chondrocytes was proven by FISH. Subsequent
3D culture of co-cultured hESCs demonstrated signifi-
cantly higher cartilage formation potential compared to
the control group, which was not co-cultured with human
chondrocytes.

The idea of indirect co-culture is that paracrine com-
munication functions via soluble factors. However, only
few studies have analysed the release of these substances.
A latent form of TGFβ1 and TGFβ2 is reported to be
expressed by growth plate chondrocytes, which becomes
activated by matrix metalloproteinase 3 (MMP-3). This
enzyme is stored in matrix vesicles and is regulated by
lysophospholipids (Boyan et al., 1994; Gay et al., 2004).
Ahmed and colleagues (2007) analysed the conditioned

Figure 4. Schematic drawing of the co-culture model described
by Bigdeli et al., (2009)

medium of cartilage samples and found secreted vas-
cular endothelial growth factor (VEGF), tissue inhibitor
of metalloproteinases 1 (TIMP-1), TIMP-2 and MMP-13;
paracrine signalling of these factors resulted in upreg-
ulated Sox9 and collagen II expression of rat BMSC
and downregulated collagen type X expression. This
demonstrates that a co-culture of MSC and chondrocytes
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not only results in enhanced matrix accumulation but also
reduces the risk of hypertrophic development.

3.4. Bioreactors

The previous sections described the potential of growth
factors in combination with adult stem cells and scaffolds
to improve cartilage regeneration. The ‘tissue-engineering
triangle’ can be extended by a fourth component, bioreac-
tors. Bioreactors are used for different purposes, including
cell seeding, cell proliferation and the generation of 3D
tissue constructs. The overall aim of using a bioreactor
is to mimic physiological conditions, including nutri-
ents, oxygen, temperature, pH, carbon dioxide, humidity
and mechanical stress. In addition, automated processing
reduces the risk of contaminations and increases repro-
ducibility (Nagel-Heyer et al., 2005; Portner et al., 2005).
One of the most important prerequisites for generating
tissue-engineered cartilage is the homogeneous distribu-
tion of cells in the scaffold. In contrast to static loading of
cells in a scaffold, which often does not result in uniform
cell distribution (Wendt, et al., 2005), high efficiencies
and uniformities can be obtained by using stirred-flask
bioreactors (Vunjak-Novakovic et al., 1996) and direct
perfusion bioreactors (Wendt et al., 2003).

Once seeded on the scaffold, mechanical forces, such as
hydrostatic pressure, direct compression or shear stress,
stimulate the cells to synthesize more extracellular matrix
compared to static cultures (Gooch et al., 2001; Wu et al.,
1999). All three types of mechanical force are at work
hundreds of times daily in our knee joints when we walk,
run or jump. Less than 10% of the mechanical load is
absorbed by direct compression of cartilage. The major-
ity is absorbed by hydrostatic pressure, which uniformly
stimulates chondrocytes from all directions (Elder and
Athanasiou, 2009; Schulz and Bader, 2007).

In vitro, there are two ways that hydrostatic pressure
can be applied. The load can be transmitted to the medium
by compression of the gas phase or by direct compression
of the fluid phase. The main advantage of hydrostatic
pressure chambers using both gas and liquid phases is
the ability to control the oxygen tension by variation of
the partial pressure (Darling and Athanasiou, 2003). Sev-
eral studies have demonstrated the positive influence of
hydrostatic pressure on the differentiation of BMSC by
increased GAG and collagen content (Angele et al., 2003;
Luo and Seedhom, 2007; Miyanishi et al., 2006a, 2006b;
Schulz and Bader, 2007; Wagner et al., 2008). In con-
trast, only two studies describe the use of bioreactors to
stimulate chondrogenesis of ASC. Increased GAG and type
II collagen expression compared to static cultures could
be achieved by applying hydrodynamic shear levels with
a perfusion-type recirculation bioreactor (Mahmoudifar
and Doran, 2010). Ogawa et al. (2009) applied hydro-
static pressure at 0–0.5 MPa, 0.5 Hz, and also found
increased chondrogenic differentiation of ASC at both the
mRNA and the protein level.

Obviously, mechanical stimulation positively influences
the chondrogenic differentiation of MSC. With regard
to future perspectives, the question arises which role
bioreactors will play in cartilage tissue engineering. Are
bioreactors tools for basic research to gain knowledge
about the behaviour of cells under controlled conditions,
or will it really be possible to grow cartilage in biore-
actors suitable for transplantation into large chondral or
osteochondral defects? Focusing on the latter, we have
to keep in mind that engineered cartilage constructs lose
their ability to integrate into the host tissue at a higher
developmental stage (Obradovic et al., 2001). Moreover,
predifferentiation of BMSC in vitro is reported to be asso-
ciated with hypertrophic development when implanted
into minipig cartilage defects. In contrast, no signs of
endochondral differentiation were observed when BMSC
were directly implanted without predifferentiation (Steck
et al., 2009). Thus, it will be important to use bioreac-
tors for the optimization of in vitro conditions to generate
well-integrating, non-hypertrophic tissue rather than fully
differentiated, mature cartilage constructs. In conclusion,
regarding availability and donor site morbidity, ASC are
especially promising for use in cartilage tissue engineer-
ing. However, in order to attain equal or superior cartilage
matrix synthesis compared to the use of chondrocytes,
they need further support. It has been shown that growth
factors, biomaterials and mechanical stimulation, but also
the presence of ‘teacher cells’ in co-cultures, can support
chondrogenic differentiation and matrix accumulation. In
order to transfer the use of ASC from bench to bed-
side, optimization and combination of the techniques is
required and finally a comparison to the clinical state of
the art.

4. Improvement of cartilage
regeneration with human
platelet-derived products

4.1. Platelet-derived products: a substitute
for fetal calf serum?

Fetal calf serum (FCS) can be regarded as the ‘gold stan-
dard’ medium supplement in cell culture. Besides the fact
that the production of FCS is accompanied by ethical
concerns, it is reported that MSC cultured in the pres-
ence of FCS internalize xenogeneic proteins (Spees et al.,
2004). This implies the risk of virus and prion transmis-
sion and the use of FCS for human products is therefore
not recommended by European legislation (Doucet et al.,
2005). Furthermore, the use of FCS for cell expansion
implies immunological risks in cell therapy (Kadri et al.,
2007; Tuschong et al., 2002). FCS has been replaced by
autologous human serum (HS) in order to achieve safe
expansion of chondrocytes for the use in ACT (Brittberg
et al., 1994). Nevertheless, donation of autologous HS
implies extra effort for the patient. Therefore, and also
with respect to using standardized growth supplements
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in cell culture, application of standardized, serum-free,
platelet lysates (PL) might be a suitable allogenic alterna-
tive to HS.

4.2. Platelet-derived products

Platelets contain a wide range of cytokines [FGF-2,
insulin-like growth factor 1 (IGF-1), platelet-derived
growth factor (PDGF), TGFβ, VEGF, epidermal growth
factor (EGF)], which are known to increase the prolifera-
tion rate of various cell types (Anitua et al., 2007; Kandler
et al., 2004; Okuda et al., 2003). Moreover, they play an
important role in tissue synthesis and remodelling (Anitua
et al., 2006; Werner and Grose, 2003). The cytokines are
stored in the α-granules of the platelets and are released
upon activation with thrombin, collagen or by mechani-
cal destruction (e.g. freeze–thaw cycles). Platelet-derived
products are termed platelet lysate (PL), platelet-rich
plasma (PRP), platelet-rich plasma releasates (PRPr) or
plasma rich in growth factors (PRGF) and have been stud-
ied and utilized since the 1970s in the field of bone, liga-
ment and tendon healing. By definition, PRP is a volume
of plasma fraction of autologous blood having a platelet
concentration above baseline (Marx, 2001; Pietrzak and
Eppley, 2005). In order to achieve clinical efficacy, enrich-
ment of four- to six-fold to 1 millon/µl is recommended
(Nikolidakis and Jansen, 2008; Sampson et al., 2008).

4.3. Clinical use of PRP

A large number of studies exist which demonstrate
promising results for treating chronic non-healing tendon
injuries by PRP injections into elbow, ankle and knee ten-
don structures. However, it is important to note that most
studies are pilot studies with small sample sizes (Samp-
son et al., 2008). Although many controversial results are
reported, PRP is also widely used in the field of bone
tissue engineering. Clinical studies by Marx et al. (1998)
and Oyama et al. (2004) in the field of oral–maxillofacial
reconstructions showed a strong effect of PRP on bone for-
mation (88 and 12 patients, respectively), while there was
weak to absent effect on bone formation in other stud-
ies investigating 26 and 10 patients (Dori et al., 2008;
Kassolis and Reynolds, 2005).

Aside from bone tissue-engineering approaches, PRP
was also suggested to possess impact to improve articular
cartilage disorders by direct injection into the patient’s
knee. This issue has been poorly investigated thus far,
but preliminary results are promising. Kon et al. (2010)
reported on 91 patients (115 knees) treated with PRP. The
health status was evaluated by IKDC- and EQ-VAS scores,
which showed that PRP treatment is safe, reduces pain and
improves knee function, especially in younger patients
(Kon et al., 2010). Nevertheless, this study is limited by
the lack of control groups and short follow-up periods
up to 12 months. Very recently, the 24-month follow-
up results of this study were published. Unfortunately
the outcome (IKDC score) worsened from 67% to 59%

of normal or nearly normal knees between the 12- and
24-months evaluations (Filardo et al., 2010). A similar
study was presented by Kon et al. at the Annual Meet-
ing of the American Academy of Orthopaedic Surgeons
in March 2010, which included viscosupplementation
(injection of hyaluronic acid) as a control group. Com-
pared to hyaluronic acid, injection of autologous PRP
demonstrated significant improvement regarding pain
and articular function.

A consistent nomenclature, as well as standardized pro-
tocols to produce PRP, are still missing and would highly
improve the comparability of studies.

4.4. The underlying effect of platelet-derived
products: knowledge from in vitro studies

In vitro studies showed that PRP activates proliferation
and migration of osteoprogenitor cells (Gruber et al.,
2003, 2004) but decreases osteogenic differentiation
of BMSC (Gruber et al., 2004). This suggests that the
osteogenic effect of PRP mainly relies on proliferation and
migration, rather than on induction of differentiation.

Different authors agree that PL also stimulate the cell
proliferation of chondrocytes (Akeda et al., 2006; Drengk
et al., 2009; Gaissmaier et al., 2005; Kaps et al., 2002;
Spreafico et al., 2009). However, controversial results are
published on the influence of chondrogenic differentiation
and cartilage matrix accumulation. Akeda et al. (2006)
used directly isolated porcine chondrocytes entrapped in
alginate, which were stimulated with FCS for 7 days fol-
lowed by 24 h in serum-free medium and finally 72 h
with FCS, platelet-poor plasma (PPP) or PRP. Compared
to PPP and FCS, stimulation with PRP resulted in high-
est proteoglycan and collagen synthesis, whereas most of
the collagen was identified as collagen type II. Spreafico
et al. (2009) expanded human chondrocytes with FCS,
PPP or PRP and subsequently cultivated the cells in a
PRP/fibrin gel, again with FCS, PPP or PRP. Less dedif-
ferentiation and increased matrix synthesis was obtained
for cells treated with PRP. Different results were achieved
by Kaps et al. (2002) (bovine chondrocytes), Gaissmair
et al. (2005) (human chondrocytes) and Drengk et al.
(2009) (sheep chondrocytes), who reported that PRP
leads to enhanced dedifferentiation of chondrocytes and
does not contribute to cartilage matrix synthesis when
applied during in vitro 3D culture. The contradictory
results might be due to different culture conditions and
different preparations of PRP. One key factor of PRP
preparation is the type of activation. Han et al. (2009)
showed that thrombin activation eliminates the chondro-
and osteoinductive potential of PRP. Two other studies
(Doucet et al., 2005; Zaky et al., 2008) strengthen these
results, reporting successful chondrogenic induction of
BMSC; in fact, they did not apply thrombin but used
several freeze–thaw cycles to activate PRP. Based on the
available data, growth factors derived from platelets are
promising as a substitute for HS for the expansion of
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chondrocytes in MACT. However, for an allogenic appli-
cation a serum-free, specifically defined PL product has
yet to be established.

In conclusion, platelet-derived products show promise
in the field of cartilage regeneration. However, imple-
mentation of a consistent nomenclature and standardized
production protocols would be highly beneficial for future
studies to prevent divergent results based on different
preparation methods.

5. Summary

Compared to other tissues, the composition of cartilage
is rather simple. It contains only one cell type and is
not vascularized. Nevertheless, at the ultrustructural level
articular cartilage possesses a unique anisotropic struc-
ture which is able to tolerate tremendous amounts of
physical stress. Unfortunately, the self-repair potential
of injured articular cartilage is very limited and func-
tional regeneration is challenging. Cartilage regeneration
according to tissue engineering principles requires the
joint expertise of biologists, chemists and engineers to
provide highly potent cells, specific growth factors and
optimized physical environments.

Although the use of autologous chondrocytes in MACT
is accompanied by concerns such as harvesting site mor-
bidity and dedifferentiation, chondrocytes are currently
still the cells of choice in the clinic. Future perspectives
include the use of freshly isolated stem cells applied in a
one-stage procedure or expanded stem cells in a two-stage
procedure. Various types of adult stem cells have been
investigated in vitro and in vivo for their potential to syn-
thesize cartilage matrix (Hildner et al., 2010b; Johnstone
et al., 1998; Mackay et al., 1998; Zuk et al., 2001). Their
potential strongly depends on induction by growth fac-
tors, type of scaffold and age of the patient. Growth factors
from the TGFβ superfamily, such as BMPs and GDF, have
demonstrated effective induction potential, especially on
BMSC and ASC (Barry et al., 2001; Feng et al., 2008;
Hennig et al., 2007; Hildner et al., 2010a; Knippenberg

et al., 2006). However, it may take decades from the
discovery of a growth factor to its clinical approval, as
was the case for BMP-2 and BMP-7 in bone regeneration.
Therefore, intra-operative use of autologous material,
which does not require marketing authorization, has been
investigated to support cartilage matrix synthesis. These
materials include cartilage matrix and freshly isolated
primary autologous chondrocytes, which are reported to
improve chondrogenic differentiation by either direct or
indirect signalling (Figure 5) (Bigdeli et al., 2009; Cheng
et al., 2009; Diekman et al., 2010; Gan and Kandel, 2007;
Peretti et al., 2000; Vats et al., 2006; Yang et al., 2008).
PRP, another autologous material that has been clinically
applied since the 1970s to heal bone fractures as well as
ligament and tendon injuries, has recently gained special
interest for use in cartilage regeneration. It is reported
that PRP can be applied for the expansion of chondrocytes
but also has potential to act as a scaffold when gelled with
calcium gluconate (Spreafico et al., 2009). Serum-free,
specifically defined PL may probably also be applied as
an allogenic product for propagating cells to be used in
cartilage regeneration. The effect of intra-articular PRP
injection on injured or degenerated cartilage is promising
but has been poorly investigated to date.

In summary, many efforts to improve cartilage regener-
ation have been undertaken during recent decades. ACT
has been improved by MACT and a series of new scaffolds
have been introduced. Research on stem cells and various
autologous materials has shown a wide range of prospects
and shows promise in supporting cartilage regeneration
in the future.
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